Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery.
نویسندگان
چکیده
The loading and containment of cargo within nanoparticles and their efficient delivery to cells represent a primary challenge in nanomedicine. We report lipid exchange between free and mesoporous silica nanoparticle-supported lipid bilayers as an effective means of containing cargo, controlling charge, and directing delivery to mammalian cells. The delivery of a membrane-impermeable dye (calcein) and a chemotherapeutic drug (doxorubicin) are demonstrated. Exchanged lipid bilayers minimized premature drug release, and an overall positive charge on the supported lipid bilayer effected enhanced delivery.
منابع مشابه
Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design
Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...
متن کاملFormulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design
Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملPorous nanoparticle supported lipid bilayers (protocells) as delivery vehicles.
Mixing liposomes with hydrophilic particles induces fusion of the liposome onto the particle surface. Such supported bilayers have been studied extensively as models of the cell membrane, while their applications in drug delivery have not been pursued. In this communication, we report liposome fusion on mesoporous particles as a synergistic means to simultaneously load and seal cargo within the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 22 شماره
صفحات -
تاریخ انتشار 2009